
Abstract. Relativistic two-electron operators obtained by
the Douglas-Kroll transformation contain p-dependent
kinematic prefactors which are not present in the
corresponding Breit-Pauli operators. These factors are
usually calculated using a resolution of the identity
approach, which requires integral transformations. In
the present article we describe an alternative approach,
based on a local approximation, where the e�ect of the
prefactors can be absorbed in the atomic contraction
coe�cients. The e�ect of the local approximation is
investigated in detail. The suggested approach is simple
to implement in integral codes that allow the use of a
general contraction scheme.

Key words: Relativistic e�ects ± Contraction scheme ±
Spin-orbit coupling

1 Introduction

The study of transition-element chemistry and especially
its role in catalytic processes is one of the most active
areas in modern chemistry [1]. Understanding this
chemistry has posed a challenge to theoretical chemists
for a long time. The development of fast computers,
e�ective algorithms and commonly available computer
codes have made calculations on ground-state properties
of molecules containing elements lighter than the second
transition row almost a matter of routine.

For heavier elements relativistic e�ects become im-
portant for properties such as barriers, geometries and
vibrational frequencies. First-order perturbation theory,
which is available in most computer codes, gives accu-
rate results for spin-free properties in the second-row

transition elements, and relativistic e�ective core po-
tentials have proven to be quite reliable also for the third
transition row.

The Dirac and Breit equations provide the fundament
for relativistic quantum chemistry [2]. The Dirac equa-
tion describes the movement of electrons in an external
®eld, and contains both kinematic e�ects such as the
mass increase with velocity and the e�ects of the inter-
action between the electron spin and the electromagnetic
®eld. However, the solutions of the Dirac (and the Breit)
equation are four-component spinors, and the method is
rather complicated to use. Although the four-component
methods have matured lately, and can now be applied to
small and medium size molecules [3], they are still rela-
tively resource-demanding and for larger systems more
e�ective methods are needed. An alternative is provided
by the Foldy-Wouthuysen transformation [4], which
brings the original Dirac equation to an approximate
two-component form. By adding perturbative correc-
tions to the two-electron Coulomb operator we obtain
the Breit-Pauli (BP) equations. These equations can be
further simpli®ed to the usual one-component form,
familiar from non-relativistic theory, by neglecting the
spin terms. Unfortunately the resulting equations are
highly singular and can only be used in ®rst-order per-
turbation calculations [5], where they often perform very
well, however. An alternative is provided by the Doug-
las-Kroll (DK) transformation [6], which starts from the
®eld-free Foldy-Wouthuysen (four-component) equa-
tion rather than the original Dirac equation. The DK
method will be further addressed in Sect. 3 below.

Although complicated to use for molecules, the Dirac
equation has been used in atomic calculations since
Desclaux's work in the early 1970s [7]. Atomic calcula-
tions can also be done with the Cowan-Gri�n method
[8], which is essentially based on the Foldy-Wouthuysen
transformation but the equations are stabilized by
choosing appropriate boundary conditions. Accurate
relativistic atomic calculations are necessary prerequi-
sites for relativistic e�ective core potentials (RECPs),
where relativity is included by ®tting the e�ective core
potential (ECP) parameters to relativistic atomic wave
functions.
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In order to calculate, for example, the ®ne structure
of atomic or molecular terms or the interaction between
di�erent spin states we need to include spin-orbit oper-
ators in the Hamiltonian.

The BP equation has been used with considerable
success for the ®ne structure of the lighter elements.
However, the BP spin-orbit operator is highly singular
due to the rÿ3 dependence, and for heavier elements the
accuracy may deteriorate; for instance the error induced
by the singular behaviour of the operator in the core
region is of the order of 2000 cmÿ1 in the thallium atom
[9, 10]. The e�ect of the DK transformation is to in-
troduce kinematic factors which dampen the singulari-
ties in the original BP equation. Although the form of
the operator does not change appreciably, the appear-
ance of the kinematic factors has hitherto required a
``resolution of identity'' (RI) procedure in the integral
calculation which has made the two-electron spin-orbit
term very cumbersome.

The occurrence of the kinematic factors destroys
some useful symmetry properties present in the original
BP equation, and requires separate handling of each
primitive integral. In the present work we suggest an
e�cient simpli®cation, based on a local approximation,
where the e�ect of the kinematic factors is absorbed in
the atomic contraction coe�cients. The computational
e�ort is thus reduced to that of an ordinary BP calcu-
lation. The e�ect of the local approximation has been
investigated by careful analysis of the two-electron part
of the spin-orbit operator.

2 Basic theory

For cases where the total relativistic e�ects are small,
they can be treated at the spin-free level as a perturba-
tion on a non-relativistic system, and in an essentially
non-relativistic formalistic framework. These pseudo-
relativistic methods have been used for 20 years with
considerable success.

The ®rst major steps towards a computationally
useful pseudo-relativistic variational approach were ta-
ken by Sucher [11], who developed the approach usually
known as the ``no-pair'' (NP) method. The method at-
tempts to eliminate positronic states through a unitary
transformation derived from the Dirac equation for an
electron in the absence of external ®elds. The name is
related to the quantum electro-dynamic approach used
in the original derivation and the justi®cation of the
approach (it is a little surprising that this works at all,
since the e�ects of interest here are precisely those
caused by the presence of a strong external ®eld!). As the
coupling between electronic and positronic states is
eliminated the latter can be removed from further con-
sideration. The equations involved are thus reduced in
complexity, from the original four-component problem
to one including only two components. (In the non-rel-
ativistic limit these two components correspond to the a-
and b-spin of a single, free electron, while in relativistic
theory these states are no longer pure and well sepa-
rated).

The Hamiltonian that results from the simple NP
treatment has a structure not much di�erent from the
usual, non-relativistic Hamiltonian:

Ĥ� �
X

i

�Ei � Veff�i�� �
X
i<j

Veff�i; j� �1�

where

Veff�i� � Ai Vext�i� � QiVext�i�Qi� �Ai ; �2�
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�
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AiAj ; �3�

Vext�i� � ÿ
P

l
Zl

jriÿrlj is the usual, non-relativistic one-
electron potential, Uij is the Breit term and

Ei � �m2c4 � p2i c2�1=2;

Ai � Ei � mc2

2Ei

� �
;

Qi � c
ripi

Ei � mc2
; �4�

rx; ry ; rz are the usual Pauli spin matrices.
The original four-component Dirac-Coulomb Ham-

iltonian has thus been reduced to the two-component
Hamiltonian H�. One of the virtues of the NP method
is that H� can be further divided into a spin-free and
a spin-dependent part.

Using the Dirac relation �ru��rv� � uv� ir�u� v� to
separate spin and space coordinates, the complete NP
operator is ®nally obtained:

HNP
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X
i
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� �
�
X
i 6�j
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HSO�i; j� � ÿBiAjL̂ijriBiAj ÿ 2AiBjL̂ijriBiAj ; �9�

L̂ij � 1

r3ij
�rij � pi� ; �10�

Ri � cpi

Ei � mc2
; Bi � Ai

Ei � mc2
: �11�

The spin-spin and other small contributions have
been neglected. In a re®nement of the NP approach,
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Douglas and Kroll [6] attempted to reach a higher
degree of de-coupling between the small and large
component. Normally, the DK procedure is carried out
only through the second order, and then only for the
one-electron part of the Hamiltonian. The resulting,
extra term in the e�ective Hamiltonian becomes:

HDK
eff � HNP

eff ÿ
X

i

1
2ffEi; W1�i�g; W1�i�g ; �12�

where the brackets f g denote an anti-commutator, W1 is
an integral operator with kernel

W1�pi; p0i� � Ai�Qi ÿ Q0i�A0i
Vext�pi; p0i�

Ei ÿ E0i
; �13�

where Vext � �pi; p0i� is derived from the Fourier transform
of the external potential. The computational implemen-
tation of the DK method by Hess et al. (see Ref. [12]) has
gained a lot of attention and has been applied with
success to a large number of chemical problems (see Ref.
[13] and references therein). In cases where spin is not a
major issue (in closed-shell systems and not extremely
heavy elements) one can often neglect the latter and
work in a spin-free formalism. The structure of this spin-
free, one-component Hamiltonian is thus the same as in
non-relativistic theory, and this structural ``isomorp-
hism'' can be used to take advantage of the vast
experience and code development for non-relativistic
calculations. One-component, ``pseudo-relativistic'' cal-
culations may be done on an almost routine basis,
especially if the two-electron part of the Hamiltonian is
treated totally non-relativistically, which is a commonly
used approach. The inclusion of spin-orbit interaction is
far more complicated and relatively few program
systems including these terms are available.

The NP and DK methods can be contrasted to the BP
approach, which is essentially a perturbation expansion
where the zeroth-order Hamiltonian is furnished by the
non-relativistic case, and the e�ect of relativity is treated
perturbatively through the ®rst order in cÿ2. The BP
approach has many similarities with DK theory, and the
BP Hamiltonian can indeed be obtained from NP,
through series expansion and truncation. For the spin-
free parts of H one must go through a series expansion
of A and B, giving rise to a multitude of additional terms
in the BP Hamiltonian, H. In contrast, the spin-orbit
terms Hso�i� are already of the order cÿ2, and the cor-
responding A � 1, B � 1=2c. The DK and BP Hamilto-
nians thus have a very similar appearance, however, in
actual applications they behave quite di�erently. The
DK method has been found to provide a variationally
stable e�ective Hamiltonian, and can thus be used in
variational calculations. This is an important advantage
over BP Hamiltonians which can only be used in per-
turbation calculations. One reason for this di�erence
stems from the form of the spin-orbit operator which is
highly singular due to the rÿ3 term. The kinematic fac-
tors A and B in DK theory regularize the singularity to
no worse than rÿ1, which does not cause numerical
problems.

3 Integrals in DK theory

While the kinematic factors have a stabilizing e�ect on
the behaviour of the various operators in DK theory,
they make the numerical procedure more complicated.
Using the linear combination of atomic orbitals (LCAO)
approximation in ab initio electronic structure theory,
one must evaluate large numbers of one- and two-
electron integrals of the basis functions over the various
operators. The basis sets normally used in modern
electronic structure theory are contracted Gaussians,
i.e. functions of the form

vt�r� �
X

j

ctjnj�r� ; �14�

where the primitive functions are given by

nj�r� � xLjyMjzNj exp ÿajr2
� �

: �15�
With those basis functions, all the integrals which arise
in the BP Hamiltonian can be obtained analytically. This
is not the case in the DK formalism. The kinematic
factors A, B and R are functions of the momentum
[Eqs. (4) and (11)] bracketing other operators which are
functions in coordinate space. This make the treatment
of the Hamiltonians somewhat complicated, and nu-
merical or other specialized techniques must be used.
One approach often used in these contexts is the spectral
resolution of the identity operator, i.e. Î � �P jkihkj�
where the sum encompasses a complete set of orthonor-
mal functions jki.

For the matrix representation of a product of oper-
ators AB, one then obtains:

ÂB̂
� �

ij � i ÂB̂
�� ��j
 � �X

k

i Â
�� ��k
 �

k B̂
�� ��j
 �

�
X

k

Â
� �

ik B̂
� �

kj� �AB�ij : �16�

We have used square brackets [ ] to denote a matrix
representation of an operator, and bold-face symbols for
matrices, i.e. A � Â

� �
;B � B̂

� �
. Equation (16) simply

states that the matrix representation of a product of
operators is the product of the matrix representations in
a complete, orthonormal basis. In a non-orthogonal
representation with metric S, the expression becomes

ÂB̂
� �

ij� �ASÿ1B�ij �17�
and with an incomplete basis, Eqs. (16) and (17) are only
approximate. A generalization of this theorem states
that the matrix representation of a function of an
operator equals the function of the matrix representa-
tion (still assuming a complete, orthonormal basis):

�f �Â��ij � �f �A��ij : �18�
It is easy to see how these ideas can be used to eval-

uate matrix elements of the algebraically complicated
operators that arise in the DK formalism. The operators
can all be written as products of the simpler BP opera-
tors, and various prefactors. The latter are all functions
of p2 and their matrix representation can therefore be

3



obtained through Eq. (17). Once all these matrices are
evaluated, Eq. (18) can be applied to obtain a matrix
representation of the di�erent terms in the DK Hamil-
tonian. The one-electron operators are generally of the
form

Q̂DK � ĈQ̂D̂ �19�
where Q̂ is the operator in BP theory, and Ĉ and D̂ are
the extra prefactors that arise in DK theory. The
integrals to be evaluated over two basis functions vt
and vu are of the form

vt Q̂DK
�� ��vu


 �
; �20�

which can be written with the above techniques as

vt ĈQ̂D̂
�� ��vu


 � � �CSÿ1QSÿ1D�tu : �21�
The approach outlined above is heavily based on a

spectral resolution of the identity operator, and is often
referred to as the RI approach. It is also possible to use
modi®cations of these techniques and approximations to
deal with the prefactors in DK theory.

vt Q̂DK
�� ��vu


 � � vt ĈQ̂D̂
�� ��vu


 � � Ĉvt Q̂
�� ��D̂vu


 �
: �22�

One can approach this problem from the point of
view of re-expanding the functions /t�r� � Ĉvt�r� and
/u�r� � D̂vu�r� in the original basis set, e.g.:

/t�r� � Ĉvt�r� �
X

i

c0tivi�r� �23�

where vi�r� are usual, contracted Gaussian basis func-
tions. To de®ne the expansion coe�cients c0ti, some
criterion on the ``best'' ®t must be applied. One can
for instance require the residual function Rt�r� � Ĉ
vt�r� ÿ

P
i c0ijvi�r� to be minimized in a least-squares

sense, i.e. that the coe�cients minimize the integralR jRt�r�j2d3r. This gives an expression c � Sÿ1C� the
expansion coe�cients, which leads to identically the
same result as with the RI approach. It is worth noting,
however, that other criteria for a ``best'' re-expansion
Eq. (23) would give di�erent integral expressions, and
thus slightly di�erent numerical values for the resulting
integrals.

4 The one-centre expansion approximation

While both the RI and the expansion method allow for
an evaluation of the necessary integrals in DK theory to
a fairly good approximation, some practical problems
remain. The application of the prefactor transformation
for the two-electron operators amounts to full four-
index transformations of all the two-electron integrals,
both for the spin-orbit interaction and in the spin-free
case. In addition to the use of a basis set for the LCAO
expansion of orbitals, the basis set is used to express the
e�ective Hamiltonian itself. As a consequence, the
Hamiltonian depends on the basis set and thus on the
geometry, not only through the nuclear coordinates, as
one would expect, but also arti®cially through the RI or
the re-expansion technique. This leads to problems of

basis set superposition (BSSE) which are di�cult to
control, since no variational principle governs the errors
caused by this basis set e�ect on the Hamiltonian.
An alternative, simpli®ed approach will therefore be
described.

It can easily be shown that the result of the operator
p2 � ÿ�h2r2 acting on a Gaussian basis function is
simply another sum of Gaussians, all centred on the
same atom. The same is true for any power of p2, and
therefore also for the prefactors A and B, which are
functions of p2. One may therefore conclude that the
function /t�r� in Eq. (23) is a modi®ed function centred
on the same atom as vt�r�. We therefore try to expand
/t�r� in the same primitive basis set as /t�r� in Eq. (23),
i.e.

/t�r� � B̂vt�r� �
X

j

c0tjnj�r� : �24�

When a basis function vt�r� is di�use, the prefactor B
will have little e�ect on it, and the expansion coe�cients
c0tj will be nearly the same as the original contraction
coe�cients (apart from a factor).

This approach would allow the e�ect of the prefac-
tors to be incorporated into an ordinary integral code
for BP integrals, simply through modi®cation of the
contraction coe�cients used in the original code. Of
course, one can treat the spin-free operators in the same
spirit, accounting for the prefactors through the use of
modi®ed contraction coe�cients.

This approach has several advantages. The applica-
tion of prefactors to the two-electron operators is greatly
simpli®ed, no additional BSSE problems are introduced
since the projection basis set used internally is totally
geometry independent, and gradient evaluation is not
more complicated than in the non-relativistic case.

5 The two-electron spin-orbit integrals

In the two-electron spin-orbit interaction term Hso(i,j)
we distinguish two terms: the spin-same-orbit (SSO) part
and the spin-other-orbit (SOO) interaction, where the
former term describes the interaction of an electron's
spin with its own angular moment due to the ®eld from
another electron and the latter the interaction of the spin
of one electron with the magnetic moment of another.
The physical interpretation of these terms is quite
di�erent, even though they happen to have similar
physical appearance. This similarity is even more
pronounced in the BP formalism, where the operator
has the form:

HSO
BP �i; j� � ÿL̂ij � �ri � 2rj� : �25�
The integrals involving the spin-orbit operator are

given by

ac L̂12 � r1
�� ��bd


 � � Labcd � rabcd ; �26�
where we have introduced the notation Labcd for the
spatial integral hacjL̂jbdi, and where spin-integration
gives rabcd � �arb� � �cd�s. Upon permutation of the
orbital indices, we obtain:
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Labcd � ÿL�badc

(� Labdc � ÿLbacd if the orbitals are real), and also

ac L̂21

�� ��bd

 � � ÿ ca L̂21db

��
 � � ÿLcdab : �28�
But since the interaction is asymmetric in the two
electrons involved there is no relation between Lcdab and
Labcd , in contrast to the usual two-electron integrals over
the Coulomb repulsion operator. For the DK Hamilto-
nian, the expression takes a less symmetric form than in
BP theory due to the occurrence of the prefactors A and
B. With the use of the RI techniques discussed in the
previous section, we obtain

ĤDK
SO �ÿ rpqrs�BapBbqLpqrsrabcdAcrAds

� 2AapBbqLpqrsrabcdBcrAds� : �29�
For the integrals involved, we note that BapBbqLpqrsAcrAds
has the same permutational symmetry as Labcd , whereas
AapBbqLpqrsBcrAds possesses no permutational symmetry
at all.

We de®ne the following two operators

X̂ij � BiAjL̂ijBiAj ; �30�
Ŷij � BjAiL̂ijBiAj ; �31�
which make the DK operator take the following form

ĤDK
SO �

X
ij

X̂ijsi � 2Ŷijsj
ÿ � �X

ij

X̂ij � 2Ŷij
ÿ �� � si :

�32�
De®ning

Ẑij � ÿXij � 2Xji ÿ 2Yji � 4Yij

3
�33�

one ®nds that

Zij � 2Zji � Xij � 2Yji : �34�
L̂ is the original BP formalism can then be replaced by
Ẑ.

Introducing x � Bx and x � Ax we can write:

Xabcd � acB1A2 L̂12

�� ��B1A2bd

 �

� ac L̂12

�� ��bd
D E

� �ab cd� � �ab cd�jj ; �35�
and X̂ has the same symmetry as L̂.

For Ŷ, however, we have

Yabcd � acB2A1L̂12 B1A2bdj i
 � ac L̂12bd
���D E

� �abjcd�
�36�

but

Yabdc � �abjdc� � �abjcd� 6� �abjcd�
Ybacd � �bajcd� � �abjcd� 6� �abjcd�
Ybadc � ÿ�bajcd� � �abjcd� 6� �abjcd� : �37�

In a computer code based on BP formalism, these
four integrals will be treated identically. Thus, it is de-

sirable to form the appropriate average in the integral
program:

fabjcdg � 1
4��abjcd� � �abjcd� � �abjcd� � �abjcd�� :

�38�
For the SOO terms, we get:

Ŷ21;abcd � acB1A2L̂21jB2A1bd

 �

� acL̂21bd
D E

� ÿ cajL̂12db
D E

� ÿ�cdjab� �39�
which also should be averaged in the integral code.

Finally,

�abjZijjcd� � 1
3�ÿ�abjcd� � 2�cdjab� ÿ 2fcdjabg
� 4fabjcdg� :

6 Practical computational considerations

While the technique with contraction coe�cients de-
scribed above is a feasible way to incorporate the
kinematic prefactors, it is still a fairly complicated
procedure. Two di�erent sets of modi®ed coe�cients are
needed (one for each prefactors A and B) and the SOO
term needs to be contracted in four di�erent ways in
order to maintain the BP structure of the program.
Alternatively, a ®le of two-electron integrals completely
without symmetry needs to be created.

There is ample evidence that the two-electron spin-
orbit term is dominated by the SSO part [14]. The SOO
interaction is typically more than an order of magnitude
smaller than the SSO term, and falls in the same cate-
gory as other small two-electron e�ects, such as spin-
spin and orbit-orbit interactions. The SOO term can
thus be omitted in most calculations without any serious
loss of accuracy. This will allow the use of existing in-
tegral programs almost without modi®cations. There is
no principle di�culty in implementing the method of
contraction coe�cients including the SOO term, it just
takes more e�ort in handling the integrals in the sorting
step. This has in fact already been done in the mean-®eld
[15] spin-orbit integral program AMFI [16]. Finally, the
statement of the local character of the prefactors should
be tested. We have done this for the one-electron spin-
orbit term through calculations on several states of Br2
and I2 using the total primitive basis in the RI procedure
and by using the suggested methods of contraction co-
e�cients.

7 Computational details

7.1 Basis sets

The bromine basis set consists of (16s 13p 8d) primitive
Gaussian type orbitals [17] contracted to [6s 5p 2d] using
a general Rafenetti contraction [18]. For iodine an
uncontracted (20s 16p 11d) atomic basis set [19] was
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contracted to [7s 6p 3d]. The contraction coe�cients
were for both Br and I determined from atomic
relativistic NP calculations on 2P ground state. Both
the bromine and iodine basis sets were extended with
correlating d- and f -functions, with the exponents 0.24
and 0.54 for bromine and 0.22 and 0.39 for iodine [20].

7.2 Calculations

All the calculations were carried out in the D2h group
symmetry. Integrals were generated by a version of the
program HERMIT [21] extended to include scalar and
spin-orbit integrals over the second-order DK operator.
This modi®ed version of the program contains the
possibility to calculate the one-electron spin-orbit inte-
grals both by the usual full RI approach and by a one-
centre expansion. The Hartree-Fock (HF) calculations
on the K reference state were performed with the
program SIRIUS [22]. The orbitals from HF calcula-
tions on the O�g �1R�g � state were used as reference

orbitals in the following con®guration interaction (CI)
calculations. The internuclear distance was set to 4.42
and 5.18 a.u. for Br2 and I2, respectively. The spin-orbit
CI calculations were carried out using only the one-
electron spin-robit operator in an internal CI space
de®ned by redistributing four electrons in the pg and the
ru molecular orbitals. The former is fully occupied and
the latter empty in the molecular ground state.

This is certainly a very small active space and the ru
orbital determined from a ground-state calculation will
be far from optimal for the excited states and, moreover,
we only used the one-electron part of the spin-orbit
operator. However, the aim of the present study is to
demonstrate the accuracy of the one-centre expansion
method, not to reproduce experimental results, and for
that purpose the quality of the calculations is satisfac-
tory.

8 Results

Results obtained for Br2 and for I2 are shown in Tables 1
and 2, respectively. The selection rules for the spin-orbit
operator is K! K� 1 and r! r� 1. In our small spin-
orbit calculation the only signi®cant interactions occur
between the 3Rÿg and the 1R�g states, and the 3Pu and the
1Pu states. It should again be emphasized that the
calculations are very constrained, and a larger calcula-
tion might change this result.

However, the main point with the calculations was to
investigate the accuracy of the one-centre expansion
method. By comparing the numbers in the last two
columns in Tables 1 and 2, we see that essentially no
accuracy is lost. The di�erences are at most in the order
of a few thousandth of a wave number, or 10ÿ8 atomic
units, and we may safely conclude that the one-centre
approximation can be used with con®dence. This result

Table 2. Results obtained for I2
using the RI approach and the
one-center expansion method.
All energies in cm)1

Non-relativistic
state

Two-center (cm)1) Relativistic state Two-center (cm)1) One-center (cm)1)

1R+ 0.00 1R+
0 0.00 0.00

3Pu 12205.76 3P2 9512.8100 9512.8097

0.131P1+0.873P1 11152.7063 11152.7061
3P0 14909.7953 14909.7957

1Pu 18026.06 0.871P1+0.133P1 19090.0930 19090.0933
3R) 24933.36 0.671R)

0+0.333R+
0 21313.8926 21313.8920

3R)
1 24938.8057 24938.8057

1D 26911.24 1D2 26916.6665 26916.6665
1R+ 28650.67 0.331R)

0+0.673R+
0 32286.4890 32286.4896

Table 1. Results obtained for Br2 using the resolution of the identity (RI) approach and the one-center expansion method. All energies
in cm)1

Non-relativistic state Energy Relativistic state RI 1 approx.

1R+ 0.00 1R+
0 0.00 0.00

3Pu 14251.21 3P2 12909.2279 12909.2299

0.041P1+0.963P1 13989.8675 13989.8683
3P0 15613.3990 15613.3969

1Pu 20723.42 0.961P1+0.043P1 20996.1182 20996.1174
3R) 29683.11 0.831R)

0+0.173R+
0 28525.4619 28525.4649

3R)
1 29684.3616 29684.3616

1D 32136.36 1D2 32137.6138 32137.6714
1R+ 34311.83 0.171R)

0+0.833R+
0 35469.9405 35469.9376
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is very encouraging, since the computational gain
achieved by this approximation is very large.

9 Conclusions

In the present paper we have discussed the problems
arising from the kinematic prefactors occurring in the
DK operators. Based on the assumption that the DK
two-electron operators are local, we suggest a scheme
where the e�ect of the kinematic factors is absorbed in
the atomic contraction coe�cients. Since the e�ect of the
kinematic factors is described by modi®ed atomic
contraction coe�cients the method is simple to imple-
ment in integral codes that allow the use of a general
contraction scheme. Test calculations on Br2 and I2
showed that the one-centre approximation results in
virtually no loss of accuracy.

Previous calculations on the T1 atom have shown
that it is very important to include the kinematic factors
in the Hamiltonian [9, 10]. The method suggested in this
paper makes it possible to include the kinematic factors
at a low computational cost. In particular, if the SOO
term is neglected existing program packages for molec-
ular one- and two-centre spin-orbit integrals can be used
almost without any changes.
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